
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
of the 18th International Conference on Process Control

Hotel Titris, Tatranská Lomnica, Slovakia, June 14 – 17, 2011

ISBN 978-80-227-3517-9

http://www.kirp.chtf.stuba.sk/pc11

Editors: M. Fikar and M. Kvasnica

Sedlák, M.: Simulation of 2D Physics of Objects Captured by Web Camera Using OpenCV and Box2D, Editors: Fikar, M.,
Kvasnica, M., In Proceedings of the 18th International Conference on Process Control, Tatranská Lomnica, Slovakia,
238–242, 2011.

Full paper online: http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/053.html

http://www.kirp.chtf.stuba.sk/pc11
http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/053.html

Simulation of 2D physics of objects captured

by web camera using OpenCV and Box2D

Michal Sedlák
∗

∗ Faculty of Electrical Engineering and Information Technology, Slovak
University of Technology, Ilkovi£ova 3, 812 19 Bratislava, Slovakia

(e-mail: michal.sedlak@stuba.sk)

Abstract: The paper presents one approach to simulation of physics applied on objects
captured by web camera. Introduced approach utilise OpenCV library for image capturing and
contour detection. Objects detected by OpenCV are reconstructed from its outlines in Box2D
environment so the physics can be applied to it. Because of restrictions of Box2D we needed to
do approximation and scaling of outlines and tessellation of objects with Delaunay triangulation
algorithm.

Keywords: OpenCV, Python, Box2D, physics, tessellation

1. INTRODUCTION

This paper describes applying of Newtonian physics to
objects recognized in image captured from camera. Sim-
ulation of physics is used in many modern applications.
You can �nd it in implementations used by game engines,
there are as well more complex implementation used in
3D drawing and animation programs or exact and precise
simulation in CAE and CAD programs. Paper describes
process of animation of objects, from a capturing phase,
over detection of the object outlines and interpretation of
objects in physical engine, to animation of such objects.
This approach can be applied in education of physics at
elementary schools, with interactive blackboards, or in
computer games.

2. OBJECT DETECTION AND OPEN COMPUTER
VISION LIBRARY

To apply a physics to hand drawn objects we need to
identify and isolate objects from image. We have used
a web camera as a source and Open Computer Vision
(OpenCV) library as processing tool of the images.

2.1 OpenCV

In regards the book of Bradski and Kaehler (2008)
OpenCV is a library for open source programming func-
tions for real time computer vision, with more than �ve
hundred optimized algorithms. It can be used with C++,
C and Python. We chose Python version, which is opti-
mized Python wrapper to C++ functions.

In the beginning we have to capture image to work
with. OpenCV library has implemented methods for image
capture from camera. Simple image capture is shown in
Listing 1.

1 s e l f . camera = cv .CaptureFromCAM(−1)
2 s e l f . image = cv . QueryFrame (s e l f . camera)

3 s e l f . DetectOut l ine (s e l f . image)

Listing 1: Query image frame from web camera

In line 1 of Listing 1 we initialize our web camera. In
variable camera is allocated and initialized object that can
query web camera for new image. Then as we see in
Listing 1 line 2 we can get the image from camera and
store it in the variable named image. Captured image is
shown in Fig. 1.

Fig. 1. Image captured form camera

Now when we have image data stored in the variable, we
can process data to �nd outlines.

1 def DetectOut l ine (s e l f , image) :
2 image_size = cv . GetSize (image)
3 g r ay s c a l e = cv . CreateImage (image_size , 8 ,

1)
4 cv . CvtColor (image , g raysca l e , cv .CV_BGR2GRAY)
5 cv . Equa l i z eH i s t (g raysca l e , g r ay s c a l e)

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 053.pdf

238

6 s t o rage = cv . CreateMemStorage (0)
7 cv . Threshold (g raysca l e , g raysca l e , 50 , 255 ,

cv .CV_THRESH_BINARY)
8 s e l f . contours = cv . FindContours (g raysca l e ,
9 cv . CreateMemStorage () ,

10 cv .CV_RETR_TREE,
11 cv .CV_CHAIN_APPROX_SIMPLE)
12 i f l en (s e l f . contours) > 0 :
13 s e l f . contours = cv . ApproxPoly

(s e l f . contours ,
14 s torage ,
15 cv .CV_POLY_APPROX_DP,
16 1 . 5 ,
17 1)
18 return s e l f . contours

Listing 2: Outline detection

In function DetectOutline() in Listing 2 is shown how to �nd
outlines of objects in image. First we convert image to grey
scale as seen on Listing 2, line 3.

Then we run histogram equalization (Listing 2, line 5).
Equalization makes objects better visible and gives better
output for thresholding (Listing 2, line: 7) which makes
black and white as you can see in Fig. 2a.

Outline detection is done with function cv.FindContours()

(Listing 2, line: 8). Output of thresholding is shown in
Fig. 2b.

(a) Equalize histogram (b) Thresholding

Fig. 2. E�ects applied on images

After outline detection we have a tree of contours stored in
the variable self .contours. These trees are iterable objects
sorted from outer to inner outline connected by property
h_next and v_next that we will describe in paragraph
about creation of objects from outlines.

Contour can be very complicated and consist of thousands
of points, which would cause objets with thousands of
vertices. It is time demanding to simulate complicated
objects, that is why we use polynomial approximation of
the contour points. (line: 13). Visualisation of outlines is
shown in Fig. 3.

Now we have all outlines stored in the outline tree struc-
ture, so we can create objects and apply a physics.

3. PHYSICS SIMULATION IN BOX2D

There is lot of physics engines that can be used for
simulation of physics. Because we wanted to simulate
physics only in 2D we could code our own implementation
of physics, or use one of commercial or open source engines.

Fig. 3. Visualisation of contours

We chose Box2D [Thorn (2010)], which is open source 2D
physics engine with implementation of rigid body objects
and their collisions.

3.1 World

To create physics simulation we need to create world.
World is object that manages memory, objects and simu-
lation. Creation of world is shown in Listing 3:

1 s e l f . worldAABB=box2d .b2AABB()
2 s e l f . worldAABB . lowerBound = (−100.0 , −100.0)
3 s e l f . worldAABB . upperBound = (600 .0 , 600 . 0)
4 g rav i ty = (0 . 0 , −10.0)
5

6 doSleep = True
7 s e l f . world = box2d . b2World (s e l f . worldAABB ,

grav i ty , doSleep)

Listing 3: Creation of Box2D world

First we have to create boundaries of the world. We de�ne
them as vectors from bottom left (Listing 3, line: 2) to
top right (Listing 3, line: 3). Objects have to be inside the
boundaries, when an object touch the boundary it gets
stuck. Then we de�ne gravity vector (Listing 3, line: 4).
The last thing before creation of the world we allow objects
to sleep (Listing 3, line: 6). Object that are not moving fall
asleep, then they are ignored by the engine. Last line of
Listing 3 creates the world.

World is created and we are ready to create objects from
outlines.

3.2 Objects

Every object that is simulated in Box2D consists of body
and shapes. Our objects are described by the contour tree.
To create objects we need to iterate through contour tree
to �nd contours that belongs together and create objects
for these contours.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 053.pdf

239

3.3 Contour tree

Contour tree is object in which are stored points of each
contour. Contours are connected by functions returning
reference to other contours with h_next() and v_next(),
where h_next() is reference to deeper contour, and v_next()

is reference to another object contour. To iterate over
all contours we have created recursive function shown in
Listing: 4.

1 def CreateObjectsFromCountours (s e l f , cont ,
h=0, v=0) :

2 i f v>0:
3 dens i ty = 10 .0
4 else :
5 dens i ty = 0
6 i f l en (cont) >8:
7 s e l f . CreateObject (cont , h , v)
8

9 i f cont . v_next () :
10 v += 1
11 s e l f . CreateObjectsFromCountours (

cont . v_next () , h , v)
12 v −= 1
13

14 i f cont . h_next () :
15 h += 1
16 s e l f . CreateObjectsFromCountours (

cont . h_next () , h , v)

Listing 4: Function to iterate through contour tree

We iterate through contour tree. First level is outer con-
tour of the image (Listing 4 line: 2), because we do not
want the outer contour to move, we set it as static by
setting density to 0 (Listing 4 line: 5). Every other contour
is dynamic body with density set to 10 (Listing 4 line: 3).

When we know what type of object we will create, we can
create bodies and shapes for our contours.

3.4 Bodies, shapes and collisions

Bodies are backbone used by shapes. One body can contain
more shapes, but one shape could be attached to only one
body. Box2d is rigid body physics engine, that mean that
shapes attached to body can not move against other, or
body. Body have position and velocity. Forces, torques and
impulses can be applied to body [Catto (2010)]. Bodies
just hold the shapes and shapes are elements that collide
together.

Listings 5,6,7 shows process of object creation:

1 def CreateObject (s e l f , cont , h , v) :
2 contM = []
3 for point in cont :
4 x = point [0] / 3 0 . 0
5 y = point [1] / 3 0 . 0
6 contM . append ((x , y))
7

8 bd=box2d . b2BodyDef ()
9 bd . p o s i t i o n = (0 . 0 , 0 . 0)

10

11 edgeDef=box2d . b2EdgeChainDef ()
12 edgeDef . s e tV e r t i c e s (contM)
13

14 i f v==0:
15 body = s e l f . world . CreateBody (bd)

16 try :
17 s e l f . contourBodies . append (body)
18 except :
19 s e l f . contourBodies = [body]
20 body . CreateShape (edgeDef)

Listing 5: Creation of object from outer contour

Image size is measured in pixels and Box2D units are
kilograms, meters, and seconds (KMS) we should scale
images coordinates to �t in 0.1m to 10m. In that scale
is performance of Box2D the best. We are doing it by
dividing of value of pixel coordinates by 30.0 (Listing 5
line: 4)

Then we create a body de�nition that will represent our
contour(Listing 5 line: 8) and set up it initial position in
next line.

After that we create shape of body as chain of edges
(Listing 5 line: 11) and assign the array of vertices to
it (Listing 5 line: 12). Edges are special type of shapes
that have no mass. Edges are represented as lines between
vertices that collide with other non-edge objects. Edges
are easy to create because they do not have to be concave
unlike polygons.

At last we attach this shape to created body Listing 5
20. Because Box2D does not keep track about body
de�nitions, we have to store bodies in to array for later
use (Listing 5 line: 19).

Listing of the function CreateObject() continues in Listing 6.
This part of function creates dynamic objects inside the
outer contour. In this part we prepare list for bodies of
objects, so we can modify objects that are already created
or objects that we want append new shapes.

21 i f v == 1 :
22 try :
23 body = s e l f . ob j ec tBod i e s [h]
24 except :
25 body = s e l f . world . CreateBody (bd)
26 s e l f . ob j ec tBod i e s [h] = body

Listing 6: Creation of objects

3.5 tessellation

Box2D supports only collisions between convex objects
and contours of objects captured by camera are mostly not
convex. So we have to break outlines to convex polygons.
There is more ways how to break concave objects. We
chose the 2D constrained Delaunay triangulation algo-
rithm implemented by poly2tri Python library[Rognant
et al. (1999)]. Function CreateObject() continuous in List-
ing 7

27 po l y l i n e = []
28 for (x , y) in cont :
29 po l y l i n e . append (p2t . Point (x , y))
30 cdt = p2t .CDT(po l y l i n e)
31 t r i a n g l e s = cdt . t r i a n gu l a t e ()
32 for t in t r i a n g l e s :
33 x1 = t . a . x /30 .0
34 y1 = t . a . y /30 .0
35 x2 = t . b . x /30 .0

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 053.pdf

240

36 y2 = t . b . y /30 .0
37 x3 = t . c . x /30 .0
38 y3 = t . c . y /30 .0
39 i f math . hypot (x2−x1 , y2−y1) <0.1:
40 x2 = x2 + math . copys ign (0 . 1 , x2−x1)
41 y2 = y2 + math . copys ign (0 . 1 , y2−y1)
42 i f math . hypot (x3−x2 , y3−y2) <0.1:
43 x3 = x3 + math . copys ign (0 . 1 , x3−x2)
44 y3 = y3 + math . copys ign (0 . 1 , y3−y2)
45 i f math . hypot (x1−x3 , y1−y3) <0.1:
46 x1 = x1 + math . copys ign (0 . 1 , x1−x3)
47 y1 = y1 + math . copys ign (0 . 1 , y1−y3)
48 poly=box2d . b2PolygonDef ()
49 poly . s e tV e r t i c e s (((x1 , y1) , (x2 , y2) ,

(x3 , y3)))
50 poly . dens i ty = 1 .0
51 poly . r e s t i t u t i o n = 0 .0
52 poly . f r i c t i o n = 0 .0
53 body . CreateShape (poly)
54 body . SetMassFromShapes ()

Listing 7: Creation of objects

The creation of objects continues with tessellation. We
need to assign vertices to structure that could be un-
derstood by poly2tri library (Listing 7 line: 29) and we
initialize the CDT object (Listing 7 line: 30). In next
line we call function that will create triangles from the
vertices assigned before. These triangles are in image pixel
coordinates, so we need to scale them at �rst (Listing 7
lines: 32-38). Now when we have triangles scaled we need
to scale the triangles that are too small to triangles with
size at least 0.1m because of speed optimalization, this
is done in Listing 7 lines: 39-47). Now we have set of
triangular shapes that could be attached to body (Listing 7
line: 53). Because these objects are compound objects,
we need to set the center and amount of mass to this
body. We can let Box2D set this properties based on shape
information with function SetMassFromShapes() (Listing 7
line: 54). Visualisation of objects is in Fig. 4.

Fig. 4. Visualisation of objects after triangulation

After this we can add other objects and start simulation
by function Step(). After few second of simulation are all
objects on the bottom of the screen like is shown in Fig 5.

Fig. 5. Visualisation of simulation

4. FUTURE WORK

This approach can be used in interactive blackboards used
for education of physics on elementary schools, in future
work we plan to implement identi�cation of some special
objects like springs or joints.

We are planning to implement object tracking, and dy-
namic object morphing so we could interact with simu-
lated objects. Because of Box2D is rigid body engine, is
complicated to simulate physics of objects that change
their shape in time. We plan to implement some soft body
elements to make this possible.

The last stage will be usage of captured images as source
of textures of simulated objects. Because this is only
decorative element, we are planning to implement this task
as a last one.

ACKNOWLEDGMENTS

This work was partially supported by the Project VEGA
1/0656/09: Integration and development of nonlinear and
robust control methods and their application in controlling
�ying vehicles, by the project KEGA 3/7245/09 Building
virtual and remote experiments for network of online lab-
oratories. It was also supported by the grant (No. NIL-
I-007-d) from Iceland, Liechtenstein and Norway through
the EEA Financial Mechanism and the Norwegian Finan-
cial Mechanism. This project is also co-�nanced from the
state budget of the Slovak Republic.

REFERENCES

Gary Bradski and Adrian Kaehler. Learning OpenCV:
Computer Vision with the OpenCV Library. O'Reilly,
Cambridge, MA, 2008.

Erin Catto. Box2D v2.0.1 User Manual. http://code.
google.com/p/pybox2d/downloads/detail?name=2.
0.2%20documentation%20from%20wiki%20archive.
zip, July 2010. [Online; accessed 20-January-2011].

L. Rognant, J.M. Chassery, S. Goze, and J.G. Planes.
The delaunay constrained triangulation: the delaunay

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 053.pdf

241

stable algorithms. In Information Visualization, 1999.
Proceedings. 1999 IEEE International Conference on,
pages 147 �152, 1999. doi: 10.1109/IV.1999.781551.

Alan Thorn. Game Engine Design and Implementation.
Jones & Bartlett Publishers, Cambridge, MA, 2010.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 053.pdf

242

